Deconvolution

Class: NodeImageLandweberDeconvolution

Node Icon

Deprecated!

Deconvolve an image using the Landweber deconvolution algorithm as defined in Bertero M and Boccacci P, “Introduction to Inverse Problems in Imaging”, 1998. The algorithm assumes that the input image has been formed by a linear shift-invariant system with a known kernel and is best suited for images that have zero-mean Gaussian white noise.

This is the base implementation of the Landweber algorithm. It may produce results with negative values. For a version of this algorithm that enforces a positivity constraint on each intermediate solution, use Projected Landweber Deconvolution.

Inputs

Image

Input image.

Type: Image4DFloat, Required, Single

Kernel

Kernel image.

Type: Image4DFloat, Required, Single

Outputs

Output

Resulting image.

Type: Image4DFloat

Settings

Boundary Condition Selection

Sets the method to use when calculating voxels close to the bounds of the image.

Values: ZeroPad, ZeroFluxNeumannPad, PeriodicPad

Output Region Mode Selection

Sets the output region mode.

Values: Same, Valid

Alpha Number

Relaxation factor.

Normalize Boolean

Normalize the output image by the sum of the kernel components.

Iterations Integer

Set the number of iterations.

References